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Abstract—The elderly population is increasing, imposing
among others a continues demand for customized health-care
solutions. Many of these systems rely on accurate indoor posi-
tioning in order to activate actuators’ functionalities at assisted
environments. Typically these systems rely to Bluetooth and
WiFi beacons with accuracy around 1 meter. Throughout this
paper, we introduce a low-cost embedded system that rely on
Ultra-WideBand technology to enable accurate indoor positioning
and navigation. Experimental results with different scenarios
highlight the superiority of proposed platform, since the mean
error between estimated and actual path can be up to 5-7cm.

Index Terms—Indoor positioning, IoT, Low-cost, Beacon tech-
nology

I. INTRODUCTION

With an ever-growing elderly population, various ambient
assisted living (AAL) technologies have been proposed. These
systems rely on embedded, and Internet-of-Things (IoT) sys-
tems, to enable independent living and improve the quality
of life of elder people. Since the majority of these systems
are triggered based on people movement and/or their location
within houses, these systems rely on technologies for indoor
positioning. Moreover, recent studies indicated that the mon-
itor and study behavioral patterns is a useful tool for early
detection of some degenerative diseases, such as Alzheimer’s
disease [1] [2] [3] [4].

During the last decade many indoor positioning systems
have been presented, most of them relying on fingerprinting-
based and proximity technologies. In detail, there are solutions
for indoor positioning that rely on WiFi [5] and Bluetooth
[6] beacons that rely on fingerprint, More specifically, the
fingerprint refers to an RSSI (Received Signal Strength Indi-
cator) feature vector composed of received signal values from
different emitting devices or beacons. In case we also consider
the position of beacon deployment, the previously mentioned
technologies can also support proximity-based functionality.
GPS-based solutions [7] can also be used for this purpose, but
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with limited applicability due to attenuation of the satellite
signal to indoor environments.

The previously mentioned systems support indoor position-
ing in room-scale size to activate a device when somebody
enters/leaves to/from a room. The majority of these solutions
rely on sensors that trigger events to enable more advanced
functionalities and services, such as to control lighting, win-
dows, doors, locks, water outlets, etc. However, the limited ac-
curacy of estimations cannot support more advanced services
related to the positioning or navigation of elderly people within
the room. To overcome this drawback, algorithms that improve
accuracy were also explored [6] [5]. However, these algorithms
have increased computational complexity; thus, their execution
cannot be performed onto low-cost embedded devices.

Throughout this paper, we introduce an indoor positioning
system to monitor the behavior of older persons, which in
turn can be used as a valuable tool for multiple assisted
living services. The proposed solution relies on a Ultra-
WideBand (UWB) technology, which enables higher precision
measurements. Experimental results with different operating
configuration scenarios and trajectories highlight the superi-
ority of introduced solution, as we achieve average accuracy
in indoor positioning ranging between 5–7cm. Additionally,
the reduced computational complexity of proposed system is
also crucial, since it can be implemented as part of a low-cost
embedded device with limited maintenance cost (e.g. power
charges). Finally, the proposed solution is easily expandable
with the minimum engineering cost. Since each room has its
own accuracy constraints (e.g. based on furniture), accurate
indoor positioning will require different number of anchors.

The rest of the paper is organized, as follows: Section II
describes the proposed architecture for the indoor positioning
solution. The algorithmic approach for this system is discussed
in Section III. Experimental results that highlight the efficiency
of the proposed solution as compared to state-of-the-art rele-
vant products are provided at Section IV. Finally, Section V
concludes the paper.
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II. ARCHITECTURE OF PROPOSED LOCALIZATION SYSTEM

This section describes the architecture of the proposed low-
cost IoT system for indoor positioning and navigation. Figure
1 gives an overview of this architecture consisted of three
types of components, namely the anchors, the tags and
the local hub. The system’s installation phase impose to
assign anchors to predefined locations (x and y coordinates
in home scale), while tag(s) can be randomly moved within
this area. In order to maximize the accuracy, anchors location
should be carefully selected to support sufficient area coverage.
Based on our exploration, we conclude that 4 – 6 anchors
should be placed per room. These anchors should be uniformly
distributed over the room’s area by taking into consideration
the phenomena of reflection, refraction, diffraction, absorption,
and scattering (e.g. from dark points) [9].

Local Hub
(data processing 

at real-time)

Anchor 1

Anchor 2

Anchor n

Tag 1

Tag 2

Tag k

UWB

Local Hub
(data processing 

at real-time)

Anchor 1

Anchor 2
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Fig. 1: Architecture of the proposed indoor positioning system.

A. Calculate Time-of-Flight

In order to enable each tag to calculate its own distance
from any anchor, our solution relies on time-of-flight metric.
In relevant literature there are alternative approaches dealing
with this topic, each of which exhibits advantages and dis-
advantages. Among others, widely adopted solutions include
time of arrival (ToA) and time-difference of arrival (TDoA)
techniques. More precisely, the ToA technique measures the
time elapsed from message transmission (source node) until
it is received (target node). This technique pre-request that
the devices clocks must be synchronized, which is extremely
difficult especially when we deal with low-cost solutions (even
a negligible offset in clocks might result to hundreds of meters
accuracy loss). A similar approach is TDoA, where the tag
receives a message that is periodically transmitted from each
anchor. Since the functionality of this technique relies on
calculating the time difference between message receipt at
system’s receiver nodes, these receivers must be synchronized.
Thus, this approach has also limited applicability to low-cost
indoor positioning systems.

The proposed indoor positioning system relies on Two-Way-
Ranging (TWR) technique, which is schematically depicted at
Figure 2. Since this approach does not distinguish between
transmitter and receiver node, both tag and anchors transmit
and receive messages. Without affecting the general applica-
bility of this approach, we will assume that the tag (moving

person) initiates periodically a task for positioning estimation.
For this purpose, it broadcasts a packet that contains tag’s
unique ID (tag id) and timestamp t1 (refers to the time of
transmission). In case an anchor receives such a packet, it
replies by attaching its own unique ID (anchor id), the time
of packet’s receipt (timestamp t2), as well as the time of
new transmission (timestamp t3). Finally, if a tag receives
anchor’s transmission, if checks whether its own id (tag id)
can be found inside the packet. If yes, it attaches the current
timestamp (t4) and the packet is further processed in order to
calculate the time-of-flight (ToF) based on Equation 1. Note
that the ToF metric is proportional to the distance (in meters)
between tag and anchor.

ToF =
(t4 − t1)− (t3 − t2)

2
(1)

Since the TWR technique does not require any kind of clock
synchronization, it exhibits higher flexibility and applicability,
as compared to the ToA and TDoA techniques discussed pre-
viously. However, the main drawback of this technique affects
the more message transmission to calculate time difference,
which in turn might affect the mobile nodes’ energy autonomy.
In order to overcome this challenge, next subsection explores
also the impact of network transmission protocol.
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Fig. 2: Distance calculation between tag and anchor.

III. INDOOR POSITIONING

Having as input the distances from tag to room’s tags (as
they are were computed based on ToF metric with Equation 1),
this section describes the calculation of tag’s (x, y) location
within a room. Our system applies the trilateration method,
which calculates the Cartesian coordinates of tag based at least
on 3 reference points (anchors). For demonstration purposes,
lets assume that our architecture consists of 1 tag and 3 anchors
(marked with A, B and C), as it is depicted at Figure 3. In
such a case, the radius of each circle (Euclidean distance) is
computed according to Equations 2–4.

r1 =

√
(x− x1)

2
+ (y − y1)

2 (2)

r2 =

√
(x− x2)

2
+ (y − y2)

2 (3)

r3 =

√
(x− x3)

2
+ (y − y3)

2 (4)
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Fig. 3: Positioning estimation based on trilateration method.

In order to solve these equations, we apply the least squares
error method, which exhibits limited computational com-
plexity and can be deployed in low-performance embedded
devices. More specifically, the previously mentioned equations
can be represented in the following form:

(x−x1)
2+(y−y1)

2− [(x−x2)
2+(y−y2)

2] = r21−r22 (5)

(x−x1)
2+(y−y1)

2− [(x−x3)
2+(y−y3)

2] = r21−r23 (6)

Hence, the Equations 5 and 6 cane be represented in
the form of tables Ax = b, as it is depicted at Equation
7. The solution of this equation is retrieved according to
X = A−1b. In case, the system has more anchors (A1, A2,
. . ., Ax) than tags, the tag’s position is calculated based on
X = (ATA)−1AT b.

2
(
x2 − x1 y2 − y1
x3 − x1 y3 − y1

)
︸ ︷︷ ︸

A

×
(
x
y

)
︸︷︷︸
X

=

(
r21 − r22 − x2

1 − y21 + x2
2 + y22

r21 − r23 − x2
1 − y21 + x2

3 + y23

)
︸ ︷︷ ︸

b

(7)

The accuracy of tag’s positioning can be further improved
with the iterative least squares (RLS) method. In detail, RLS is
an adaptive filter algorithm that iteratively finds the coefficients
that minimize a weighted linear least squares cost function
relating to the input signals.

In order to implement this method, initially we assume that
tag’s location is (Xp, Yp), where the distance from all the
anchors is the same (as it is depicted at Figure 3. Next, we
summarize the sine and cosine for angles θ1, θ2, and θ3. Also,
we calculate the difference between radius r1 − r10, r2 −
r20, and r3 − r30 found in table b. These data are fed to
the least square algorithm in order to calculate the anchor’s
deviation versus its previous positioning (Xp, Yp). Finally, we
refine tag’s position and repeat iteratively algorithm until the
error to be minimized (the values of array b to be minimized).
For demonstration purposes, the previously mentioned analysis
refers to a case with 3 anchors and 1 tag; however, it is also
applicable to any other system configuration.

The pseudocode depicted at Algorithm 1 implements the
functionality of calculating tag’s position with the proposed
framework.

Algorithm 1 Proposed algorithm for indoor positioning.

Require: max iterations ≥ 0
0: while i ̸= max iterations do
0: r10←

√
(Xp−X1)2 + (Y p− Y 1)2

0: r20←
√
(Xp−X2)2 + (Y p− Y 2)2

0: r30←
√
(Xp−X3)2 + (Y p− Y 3)2

0: A ← [Xp−X1
r1 ∗ Y p−Y 1

r1 ; Xp−X2
r2 ∗ Y p−Y 2

r2 ; Xp−X3
r3 ∗

Y p−Y 3
r3 ]

0: b← [r1− r10; r2− r20; r3− r30]
0: X ← 1

(A′∗A) ∗ (A
′ ∗ b)

0: Xp← Xp+X(1)
0: Xp← Xp+X(2)
0: if (b improvement is negligible) then
0: stop iterations
0: end if
0: end while=0

In order to further improve the accuracy of our system, we
apply a complementary filter, which consists of a combination
of a Low-Pass Filter (LPF) and a High-Pass Filter (HPF). Such
a min-max approach reduces signal noise towards improving
the accuracy of localization estimations. The efficiency of this
filter depends on the a parameter (in the range of [0, 1]),
which defines that the algorithm will compute current output
based on (1 − a)% of the previous value increased by a%
of the current value. Previous studies indicate that comple-
mentary filter outperforms Kalman filter significantly by using
less computational and processing power and providing more
accuracy [8].

IV. EXPERIMENTAL RESULTS

The proposed indoor positioning system was implemented
based on DWM1001-DEV development board that rely on
UWB technology [10]. For evaluation purposes, the system
consisted of 6 anchors and 1 tag was applied to a large-
scale room depicted at Figures 5(a) and 5(b). The data transfer
between each tag and the available anchors is performed based
on the architecture depicted at Figure 4. Without affecting the
general applicability of the proposed solution, for evaluation
purposes, the data processing is performed online to an ex-
ternal PC. However, in the near future we plan to perform
this functionality within tag (at a Raspberry Pi processing
node). The efficiency of the proposed solution was evaluated
with three representative scenarios (i.e. movements) within a
room, namely a diagonal (Figure 6), a zig-zag (Figure 7) and
a random path (Figure 8).

A. Diagonal Path

The efficiency of the proposed indoor positioning system
was initially evaluated based on a diagonal path. The results
to this analysis (output of trilateration method) regarding
both the raw data and the proposed positioning framework
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Fig. 4: Architecture of the Tag-Anchor data transfer.

(a) (b)(a) (b)

Fig. 5: Anchors placement within the room: (a) A2, A3, A4,
A5, (b) A1, A5, A6.

(based on iterative mean square error and complementary
filter) are depicted at Figure 6 with red- and purple-colored
lines, respectively. At this figure we depict also with green
color line the reference solution (ground-truth path).

3 4 6

(a) (b) (c)

3 4 6

(a) (b) (c)

Fig. 6: Accuracy of proposed indoor positioning system with
3, 4, and 6 anchors vs. ground-truth data for diagonal path.

The diagonal path is the simplest one among the studied
movements and it is used in order to quantify the efficiency
perform computations based on different number of available
anchors. In detail, we explore the accuracy to determine

3 4 6

(a) (b) (c)

3 4 6

(a) (b) (c)

Fig. 7: Accuracy of proposed indoor positioning system with
3, 4, and 6 anchors vs. ground-truth data for zig-zag path.

(a) (b) (c)

3 4 6

(a) (b) (c)

3 4 6

Fig. 8: Accuracy of proposed indoor positioning system with
3, 4, and 6 anchors vs. ground-truth data for random path.

tag’s position when the proposed algorithms consider signal
measurements from 3, 4 and 5 anchors. For this purpose,
computations are performed based only on the 3 and 4
closest anchors to the tag (based on the time-of-flight metric).
The results from this analysis are summarized at Table II.
According to this analysis, the proposed system results to
accuracy errors ranging from 3–4.8cm, on average.

B. Zig-Zag Path

A zig-zag pattern quantifies system’s response for frequent
changes to the tag direction. The results to this analysis
(output of trilateration method) regarding both the raw data and
the proposed positioning framework(based on iterative mean
square error and complementary filter, depicted with red- and
purple-colored lines respectively, can be found at Figure 7. The
reference to this analysis is the ground-truth path depicted with
green color line.

For shake of completeness, we also explore the same
scenario when position is calculated with fewer anchors. For
this purpose, computations are performed only the 3 and 4
closest anchors to the tag (based on the time-of-flight metric).
The results from this analysis are summarized at Table II.

Based on this analysis, we conclude that the proposed
system achieves superior performance for all the studied
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TABLE I: Statistical analysis regarding the diagonal path (error based on ground-truth) in cm.

Raw Proposed Raw Proposed Raw Proposed
Num. Anchors 3 3 4 4 6 6
Min 0.119 0.051 0.038 0.026 0.014 0.013
Max 20.34 11.23 26.36 11.06 19.75 13.16
Mean 5.563 4.224 4.775 3.084 5.661 4.843
Median 5.052 4.261 3.839 2.222 4.106 4.579
Standard deviation 4.128 2.954 4.442 2.767 4.863 3.529

TABLE II: Statistical analysis regarding the zig-zag path (error based on ground-truth) in cm.

Raw Proposed Raw Proposed Raw Proposed
Num. Anchors 3 3 4 4 6 6
Min 0.019 0.013 0.084 0.083 0.035 0.024
Max 26.66 16.89 22.10 14.31 22.06 15.21
Mean 7.746 7.371 7.315 6.848 4.678 3.965
Median 7.608 7.381 7.170 7.484 3.407 3.230
Standard deviation 5.081 4.353 4.171 3.760 4.200 3.390

TABLE III: Statistical analysis regarding the random path (error based on ground-truth) in cm.

Raw Proposed Raw Proposed Raw Proposed
Num. Anchors 3 3 4 4 6 6
Min 7.381 0.555 0.0161 0.059 0.023 0.015
Max 35.42 26.80 34.50 25.04 85.17 44.61
Mean 5.832 5.640 7.268 7.072 14.48 13.80
Median 4.367 4.601 5.333 5.350 13.01 13.24
Standard deviation 5.310 4.763 6.448 5.422 11.13 9.547

configuration setups. Specifically, we reported to improve both
minimum and maximum error for the whole path, which range
from 0.013cm up to 15cm. Also, standard deviation metric
for this path also confirms this superiority, as the values
range from 4.3cm (regarding 3 anchors) up to 3.39cm (for
6 anchors).

C. Random Path

Next, we evaluate also a more complex path, where tag
is moved across the whole room, as it is depicted at Figure
8. This figure visualizes the results of this analysis regard-
ing the raw data and the proposed algorithm, as compared
to the ground-truth data. This scenario aims to stress the
indoor positioning algorithm with additional turns, as well
as movements across different directions. In order to further
quantify this analysis, Table III provides the statistical analysis
of algorithm’s accuracy regarding system configurations with
3, 4 and 6 anchors. Similar to previous analysis for the zig-zag
movement, the minimum and maximum error for the proposed
indoor positioning system range between 0.015cm and 26cm,
respectively. Regarding the mean error, it ranges from 5cm
(when only the 3 closest anchors are considered) up to 13cm
(for the scenario with 6 anchors).

V. CONCLUSIONS

A novel system for indoor positioning, was introduced.
The proposed solution relies on a low-cost UWB beacon
technology in order to calculate accurately the distance be-
tween movement tag and the anchors. Experimental results
highlighted the superiority of introduced solution, as the mean
error between estimated and actual path can be up to 5-7cm
for the two representative paths studied throughout this paper.
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